Deregulated Replication Licensing Causes DNA Fragmentation Consistent with Head-to-Tail Fork Collision
نویسندگان
چکیده
Correct regulation of the replication licensing system ensures that no DNA is rereplicated in a single cell cycle. When the licensing protein Cdt1 is overexpressed in G2 phase of the cell cycle, replication origins are relicensed and the DNA is rereplicated. At the same time, checkpoint pathways are activated that block further cell cycle progression. We have studied the consequence of deregulating the licensing system by adding recombinant Cdt1 to Xenopus egg extracts. We show that Cdt1 induces checkpoint activation and the appearance of small fragments of double-stranded DNA. DNA fragmentation and strong checkpoint activation are dependent on uncontrolled rereplication and do not occur after a single coordinated round of rereplication. The DNA fragments are composed exclusively of rereplicated DNA. The unusual characteristics of these fragments suggest that they result from head-to-tail collision (rear ending) of replication forks chasing one another along the same DNA template.
منابع مشابه
Replication Fork Reversal after Replication–Transcription Collision
Replication fork arrest is a recognized source of genetic instability, and transcription is one of the most prominent causes of replication impediment. We analyze here the requirement for recombination proteins in Escherichia coli when replication-transcription head-on collisions are induced at a specific site by the inversion of a highly expressed ribosomal operon (rrn). RecBC is the only reco...
متن کاملHead-on collision between a DNA replication apparatus and RNA polymerase transcription complex.
An in vitro system reconstituted from purified proteins has been used to examine what happens when the DNA replication apparatus of bacteriophage T4 collides with an Escherichia coli RNA polymerase ternary transcription complex that is poised to move in the direction opposite to that of the moving replication fork. In the absence of a DNA helicase, the replication fork stalls for many minutes a...
متن کاملTranscription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.
Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexe...
متن کاملDirect Restart of a Replication Fork Stalled by a Head-On RNA Polymerase
In vivo studies suggest that replication forks are arrested due to encounters with head-on transcription complexes. Yet, the fate of the replisome and RNA polymerase (RNAP) following a head-on collision is unknown. Here, we find that the E. coli replisome stalls upon collision with a head-on transcription complex, but instead of collapsing, the replication fork remains highly stable and eventua...
متن کاملReplication Fork Progression during Re-replication Requires the DNA Damage Checkpoint and Double-Strand Break Repair
Replication origins are under tight regulation to ensure activation occurs only once per cell cycle [1, 2]. Origin re-firing in a single S phase leads to the generation of DNA double-strand breaks (DSBs) and activation of the DNA damage checkpoint [2-7]. If the checkpoint is blocked, cells enter mitosis with partially re-replicated DNA that generates chromosome breaks and fusions [5]. These typ...
متن کامل